

Entry, Descent, and Landing Systems Short Course

Subject: Modular Honeycomb-Packed Polymer

Based Ablative Heatshields

Author: William M. Congdon, Director

ARA Ablatives Laboratory

sponsored by
International Planetary Probe Workshop 10
June 15-16, 2013
San Jose, California

NASA / SMD - IN-SPACE PROPULSION TECHNOLOGIES

EDL TECHNOLOGY SHORT COURSE INTERNATIONAL PLANETARY PROBE WORKSHOP-10 SAN JOSE, CALIFORNIA – 15-21 JUNE 2013

MODULAR HONEYCOMB-PACKED POLYMER-BASED ABLATIVE HEATSHIELDS (2.65-m MANUFACTURING DEMONSTRATION UNIT)

Principal Investigator:

William M. Congdon
ARA Ablatives Laboratory (ABL)
Applied Research Associates
Centennial, Colorado 80112
303 / 699-7737

NASA ISPT Contract NNM07AA93C

EXAMPLES OF CONSTITUENTS FOR CHARRING ABLATOR MATERIALS

ABLATOR REINFORCING HONEYCOMB – LAB PRODUCTION AT ABL

Standard H/C for ARA Ablators is 1.0-In. Cell Size, Large-Cell, Quartz Honeycomb (Also: Different Cell Size, Different Fabric Thickness, Different Fabric Materials)

TYPICAL PRODUCTION COMPOUNDING OF POLYMER-BASED ABLATOR

Ablator Compounds Contain Resin, Chopped Fibers, Microballoons, Other Fillers, and Special Additives

MIXED COMPOUND NEEDS TO BE CHOPPED, SPREAD THIN, AND DRIED

Ablator Compounds Contain Solvents that Require Removal Via Chopping Plus Air or Oven Drying

EXAMPLE MODULAR PACKING – 2.65-m AS SRAM-20 NOSE MODULE

From Start-to-Finish, Complete Packing Operation is a 7-hr Task for Two Packers Plus One Assistant Ablator Compound is Mixed/Processed the Day Before and "Frozen" – Honeycomb Pre-Fitted to Mold

End of Packing – Mold in Oven Under Vacuum-Bag Pressure

2.65-m SRAM-20 MDU HEATSHIELD PRODUCED VIA NINE MODULES

Ablative Thicker, Denser, More Robust than Honeycomb-Packed Ablator of Other Mars Missions Heatshield Final Thickness 1.25 in. – Produced to 1.40-in. Thickness with 0.25-in. Compound Overpack

18 Mix Batches Required for 2.65-m Heatshield

Module Type	Compound Mass	Mixed Bulk Volume	Mixed Bulk Volume	Drying Trays
Flank No.1	12,205 g	30 gal	4.01 ft ³	60
Flank No.2	12,205 g	30 gal	4.01 ft ³	60
Flank No.3	12,205 g	30 gal	4.01 ft ³	60
Flank No.4	12,205 g	30 gal	4.01 ft ³	60
Flank No.5	12,205 g	30 gal	4.01 ft ³	60
Flank No.6	12,205 g	30 gal	4.01 ft ³	60
Flank No.7	12,205 g	30 gal	4.01 ft ³	60
Flank No.8	12,205 g	30 gal	4.01 ft ³	60
Nose Part	12,502 g	31 gal	4.14 ft ³	62
Totals	110.14 kg	271 gal	36.2 ft ³	542

CONVENTIONAL PACKING NOT WORKABLE FOR LARGE HEATSHIELDS

Modular Ablator Manufacturing Enables Large Robust Heatshields (with Greater Quality)

Conventional Production – Difficulties for Large Heatshields

- Robust Heatshields Require Denser/Thicker Ablators
- Ablator Compounds Have Limited Working Life/Time
- Denser Ablators Require More Packing Effort/Time
- Thicker Ablators Require More Packing Effort/Time
- Too Many "Packers" Causes Process Interference
- Too Many Packers Needed to Meet Time Constraints

Modular Manufacturing – Advantages for Large Heatshields

- Optimal Number of Packing Technicians with Better Access
- More Clock Time Available for High Quality Packing
- Provides for Two (Pre-Cure) Vacuum-Bagging Steps (for Low Spots)
- Allows Non-Destructive Inspection Before Bonding
- Enables High-Tech Implementation (e.g., Dual-Layer Systems)
- Eliminates Risk of Loosing Entire Heatshield (e.g., Working Life)
- Facilitates Concurrent Production of Structure and Heatshield

9

Packing Has Stringent Time Limitations

Apply Vacuum Bag

2.65-m Aeroshell 1.40-in. Thick H/C 19.0 lb/ft³ S-20 Fill

MSL BACKSHELL PACKED BUT 0.5 IN. THK WITH 14 LB/FT³ COMPOUND

MSL Backshell Packing at LMA SLA-561V Lightweight Ablator

2.65-m Module Packing at ABL SRAM-20 Midweight Ablator

"Phalanx" of Engineers/Technicians (16 in full photo)

Two Engineers/Technicians (optimal)

MSL Backshell 0.50-in. Thick H/C 14.0 lb/ft³ SLA Fill

3.8 Times Mass Per Ft²

2.65-m Aeroshell 1.40-in. Thick H/C 19.0 lb/ft³ S-20 Fill

ABL 1.0-IN. LARGE-CELL HONEYCOMB MADE IN HOUSE FOR 2.65-M A/S

Process Includes Impregnating Fabric, Slitting into Ribbons, Shaping Ribbons, Assembly

ABL PRODUCTION OF 2.65-M NOSE MOLD AND FITTING H/C PANEL

Mold for Nose Module Designed to Produce a Near-Net SRAM-20 Ablator Part

ABL PRODUCTION OF 2.65-M FLANK MOLD AND FITTING H/C PANELS

Mold for Flank Modules Designed to Produce a Near-Net SRAM-20 Ablator Part

2ND MILLING DEFINES FLANK EDGES AND FINALIZES BOND SURFACE

All Eight Large Flank Modules Receive 5-Axis Milling on Both External and Bond Surface

2ND MILLING DEFINES NOSE EDGE AND FINALIZES BOND SURFACE

Single Large Nose Module Receives 5-Axis Milling on Both External and Bond Surface

NINE SRAM-20 MODULES UNDERGOING FIT CHECKS BEFORE BONDING

Ablator Module Bonding Done with Epoxy-Phenolic Film Adhesive for 2.65-m Aeroshell

FINAL COMPLETE FIT-CHECK OF NINE MODULES WITH GAP SPACERS

Engineered Gap Spacers Used to Maintain Precise Gap Widths for Subsequent Filling SRAM-20 Ablator Used to Fill Gaps – Final Heatshield is 100% SRAM-20!

BONDING NUMBER-2 SRAM-20 FLANK MODULE OF 2.65-M AEROSHELL

Bonding Operations are Facilitated by Cold Laboratory Temperatures Inhibits/Maintains Tack of Film Adhesive to Workable Level

VACUUM-BAGGED AEROSHELL IN OVEN FOR CURING ABLATOR BOND

First Vac-Bag Oven Cycle is to Cure Film Adhesive that Bonds Modules to Structure Second Oven Cycle is to Cure SRAM-20 Ablator Compound Packed into Intermodule Gaps

2.65-M SRAM-20 HEATSHILED READY FOR FINAL 5-AXIS CNC MILLING

Intermodule Gaps Fully Packed and Cured Using SRAM-20 Ablator Compound Final Milling Requires Large DMS 5-Axis Milling Machine with 10-ft Bed

DEVELOPING SEAM-PACKING PROCESS – PREPARING TEST SAMPLES

Packing Process for Intermodule Seams Validated by Arc-Jet Aeroshear Testing

56 PACKED-SEAM AND CONTROL SAMPLES FOR ARC-JET TESTING

Aeroshear Samples are 6.0 x 3.0 x 0.8 In.- Tested to MSL-Developed Shear Environments

ALL SRAM-20 PACKED SEAMS SHOWED EXCELLENT PERFORMANCE

Seam Locations Showed Same Performance as Standard SRAM-20 in Honeycomb

CHAR-LAYER GROWTH AND PERFORMANCE FOR CHARRING ABLATOR

Charring Ablator Develops Insulating Surface Char Layer During Ablation Process SRAM-20 Silicone-Based Ablator has Optimal Performance to ~350 W/cm²
Above 350 W/cm², Char Layer is Thin – Low-Density Phenolic Ablator Better Arc-Jet Stagnation Test Series at NASA Ames Research Center

SRAM-20 Sample 3425 – 128 W/cm² for 160 sec Surface Recession – 0.00 in. SRAM-20 Sample 3424 – 254 W/cm² for 60 sec Surface Recession – 0.33 in.

(New Millennium 5.0-In. Diameter Iso-Q Shaped Samples with Sandwich-Composite Substrates)

FULLY ASSEMBLED & MILLED 2.65-m MODULAR SRAM-20 AEROSHELL

Eight SRAM-20 Flank Modules and One Nose Module with SRAM-20 Gap Filler Between Modules

Aeroshell Positioned on ABL's Large Five-Axis Milling Machine

DISPLAY PLAN FOR 2.65-m MODULAR SRAM-20 AEROSHELL AT IPPW-10

Photo Below Shows Aeroshell at Lawrence-Livermore Labs for Full-Up CT-Scan Testing

Aeroshell Mounted to Lid of Shipping Container

